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ABSTRACT
In this paper, we present an empirical analysis of the GPS-enabled
taxi dispatch system used by the world’s second largest land trans-
portation company. We first summarize the collective dynamics of
the more than 6,000 taxicabs in this fleet. Next, we propose a sim-
ple method for evaluating the efficiency of the system over a given
period of time and geographic zone. Our method yields valuable
insights into system performance—in particular, revealing signif-
icant inefficiencies that should command the attention of the fleet
operator. For example, despite the state of the art dispatching sys-
tem employed by the company, we find imbalances in supply and
demand during peak business hours, often resulting in unaccept-
ably high waiting times for passengers. Surprisingly, we also find
imbalances during off-peak hours in certain zones. Finally, we dis-
cuss how techniques from multi-agent systems research, such as
distributed coordination and market-based resource allocation, may
be effective in improving the performance of this important mode
of public transportation.

1. INTRODUCTION
Taxicabs play an important role in bridging the gap between pri-

vate transportation, buses, and rail systems in urban areas. Al-
though taxi services differ significantly by country, they share many
common characteristics worldwide.

In particular, passenger demand for taxicabs depends not only on
the price of a ride but also on the waiting time. Excess capacity in
the form of empty cabs is not necessarily wasteful but in fact may
be socially desirable, as it increases the value of the service through
lower waiting times [6]. Taxi drivers, on the other hand, prefer their
vehicles to be occupied by fare-paying passengers as much of the
time as possible. This tension presents the fleet operator with the
difficult problem of balancing the interests of these two stakeholder
groups while running an efficient and profitable business.

We studied this problem using GPS data provided by Comfort-
DelGro, the operator of Singapore’s largest taxi fleet. The data set
records the movement of 6,230 GPS-enabled taxicabs over a 24-
hour period, as well as the time and location of 38,048 booking
requests. Using this data, we computed the average occupancy rate
and median passenger waiting time by hour and geographic zone.
This enabled us to identify times and locations in which the demand
for taxis exceeded the supply or vice versa. Simple scatter plots

.

of occupancy versus waiting time reveal systematic differences by
zone in the efficiency of taxi allocation, as well as periods in which
the efficiency within a zone deviates positively or negatively from
the average.

The remainder of the paper is organized as follows. Section 2
reviews the empirical literature on taxi fleets and some of the re-
lated work on autonomous vehicles. Section 3 provides a detailed
overview of the data set. Section 4 describes our analysis of the data
and presents our main results. Section 5 discusses the implications
of this finding and suggests ways that techniques from multi-agent
systems research may help to improve the performance of the sys-
tem. Section 6 concludes.

2. RELATED WORK
There is a substantial amount of economic literature on taxicab

markets, along with a number of related multi-agent systems papers
motivated by autonomous vehicles and other transportation-related
applications. Most of the economic studies emphasize the role of
excess capacity and waiting time in the demand for taxi services.

2.1 Economic Perspectives
Beesley [2] explains the number of taxicabs in operation in Lon-

don, where market entry is free, as a function of several variables.
Using data from 1960 to 1976, he finds that the number of cabs is
positively related to the number of visitors to London, taxi fares,
underground fares, and unemployment levels. In another study,
Schroeter [11] presents a model of taxicab service with radio dis-
patch and airport cabstands. Using data from a Minneapolis taxi
firm, he concludes that an increase in the number of operating cabs
would cause a decrease in waiting times and an increase in demand
in the dispatching segment of the market—but not by enough to
increase the average revenue per cab.

The literature on taxicab markets has provided solid theoretical
insights, but estimating and testing these models has been difficult
due to a lack of empirical data. Schaller [10] contributes to address-
ing this shortcoming by assembling a data set based on taxi meter
and odometer readings that the New York City Taxi and Limou-
sine Commission collects in its periodic inspections of New York
taxicabs. Based on his data, he estimates elasticities for taxicab
fares and service availability, and finds that an increase in the num-
ber of taxi licenses does not affect the revenue of existing taxicab
drivers. Flores-Guri [6] tests a model of a regulated taxicab market
using Schaller’s data set and finds a positive, inelastic relationship
between vacant taxicabs and the demand for taxicab services. He
also evaluates the effects of policy changes such as increases in the
regulated fare and the number of licenses issued.



2.2 Systems Perspectives
Advances in technology have provided a new but largely un-

tapped source of information about taxicab markets in the form of
GPS data. Our work is most closely related, at least data-wise, to
the analysis performed by Liao [8]. In particular, he used simi-
lar GPS data from ComfortDelGro for his analysis. However, our
work extends into areas (such as detailed efficiency analysis) that
were not previously tackled.

Looking a little more broadly, we find numerous pieces of work
that complement the analysis presented in this paper. For example,
Yoon et al. [13] use a combination of vehicles equipped with GPS
technology plus low-bandwidth cellular updates to dynamically es-
timate street traffic. In particular, they show that it is possible to es-
timate road conditions using just a few vehicles. In the area of traf-
fic signal optimization, Dresner and Stone presented schemes to (a)
allow emergency vehicles to go through signal junctions faster [4],
and (b) to improve general throughput at intersections [5]. In ad-
dition, Bazzan [1] and Oliveira et. al [3] showed that it is possible
to effectively control a series of distributed traffic signals. Finally,
Tumer and Agogino [12] showed that agents could be used to dy-
namically reduce congestion in an air traffic network.

3. BACKGROUND AND DATA
In this section, we describe the data used for this analysis.

3.1 System Overview
Singapore has a world-class public transportation system with

an extensive network of taxis, buses, and rapid transit rail lines that
provide convenient and affordable services to the city-state’s pop-
ulation of 4.5 million. With widely available and relatively low-
priced taxicabs (metered fares rarely exceed US $15)—along with
high taxes on private cars and petrol —many Singaporeans find
it unnecessary to own a car. Taxicabs can be flagged down at any
time of the day along any public road, with well-marked taxi stands
available outside most major shopping centers and office buildings.
Taxis can also be reserved by telephone or the Internet for an ad-
ditional fee of US $2–3. In March 2007, Singapore’s taxi fleet
consisted of 23,315 taxicabs operated by seven companies (three
owned or controlled by ComfortDelGro) and several hundred inde-
pendent owners [7].

To reduce peak-hour traffic congestion on major highways and in
the Central Business District (CBD), Singapore uses an Electronic
Road Pricing (ERP) system that automatically charges drivers when
they enter an ERP zone. When a taxi is occupied, these charges are
automatically added to the metered fare. Passengers also incur a
Peak Hour Surcharge during peak business hours (7–9 am and 5–8
pm on weekdays), a Central Business District Surcharge applicable
for trips originating in the CBD between 5–8 pm on weekdays, and
a Late Night Surcharge applicable between 11:30 pm and 6 am.

3.2 Taxi Location and Booking Data
The data set was collected on Thursday March 1, 2007. This was

a typical rainy day in Singapore (although unseasonably cold, with
an average temperature of 23 degrees Celsius).

We categorized our data into two different sets. The first set con-
tains the movement and status information of 6,230 GPS-enabled
Comfort taxicabs (3.6 million observations) over the 24-hour pe-
riod of the day. Each observation in this set contains the taxi’s
unique vehicle identification number, GPS coordinates, vehicle state,
vehicular speed and a timestamp. The taxicabs could potentially be
in one of ten different states during the day. However, among these
states, BREAK, BUSY, FREE, OFFLINE, ONCALL and POB are

State Frequency (%) Taxi Status

FREE 46.9 Active and Available

POB 32.4 Active and Occupied

BREAK 6.20 Active but Unavailable

ONCALL 4.93 Active but Unavailable

BUSY 4.91 Active but Unavailable

OFFLINE 3.13 Inactive

This table shows the six most common taxi states along with
their frequencies (the fraction of the day spent in each state by
an average taxi). POB occurs when the taxi has a passenger.
ONCALL occurs when the taxi is responding to a booking call.

Table 1: Taxi States

the most significant ones, accounting for almost 98.5% of the ob-
servations in the data set. Table 1 describes these states in more
detail; they are the only ones we considered in this analysis.

The second set contains the 38,048 taxi booking calls made by
passengers (using a phone, Internet, fax machine, or automated
kiosk) throughout the day. Each entry in this set contains a unique
booking identification number, GPS coordinates of the booking lo-
cation (where the customer wants the taxi to arrive) and a times-
tamp. All our analysis was performed using the R programming
language [9].

3.3 Summary Statistics
Table 2 shows the summary statistics for our data. We observe

that, per day, an average taxi spent about 18 hours on the road (taxis
are typically shared by more than one driver), traveled about 710
kilometers at an average speed of about 39 km/h, and picked up
about 26 passengers. An interesting observation is that taxis were
occupied (i.e., had a paying customer in them) only about 42%
of the time—suggesting possible inefficiencies in the system. We
revisit this issue in Section 4.

4. ANALYSIS AND RESULTS
The main goals of our analysis were (a) to characterize the effi-

ciency of the taxi system, and (b) to explore the sources of ineffi-
ciency, with a view to mitigating them. We began by graphically
plotting sampled taxi locations on a two-dimensional grid and com-
paring the density of taxis with the frequency of bookings in each
of four geographic zones. We then computed the occupancy rate
and median passenger waiting time for each hour and zone. These
measures enabled us to identify times and locations in which the
demand for taxis exceeded the supply or vice versa. Finally, sim-
ple scatter plots of occupancy versus waiting time reveal systematic
differences by zone in the efficiency of taxi allocation, as well as
periods in which the efficiency within a zone deviated positively or
negatively from the average.

4.1 Locations and Bookings
Figure 1 shows a subset of the observed taxi positions (0.3% of

the data set sampled uniformly at random) plotted by their geo-
graphic coordinates. The city is divided into four zones, numbered
1 to 4. The points within each zone are shaded according to the
density of bookings in that zone, with the highest shaded black.

• Zone 1, the Central Business District (Central), contains most
of the high-rise office buildings in the city, with relatively few



Figure 1: Taxi Observations by Location and Booking Frequency of Zone

residential areas. It has the highest density of bookings (as
indicated by the shading), as well as the highest density of
taxis (as indicated by the close spacing of the points).

• Zone 2, which we label Condo because of its concentration
of private condominiums and landed housing, has the sec-
ond highest density of both bookings and taxis. This zone
also includes Orchard Road, Singapore’s main retail shop-
ping district.

• Zones 3 and 4, labeled West and East respectively, include
most of Singapore’s public housing, industrial estates, and
unpopulated areas. Zone 3 has the third-highest booking den-
sity but the lowest taxi density, and conversely for Zone 4.

The figure shows the major roads (which, unlike the road net-
works typically considered in simulation studies, are not arranged
in a grid), and suggests patterns of traffic congestion that appear as
differences in density. Gaps in the plot represent nature reserves,
unpopulated water catchment areas, or military installations that
are off limits to taxis.

This figure contributes to our efficiency analysis in two ways.
First, it serves to validate the data. Although a few coordinates are
clearly inaccurate due to GPS errors—unless the taxis in question
were amphibious vehicles—the overall picture closely resembles a
map of Singapore, as we would expect. Second, it provides a visual
representation of a key baseline finding: at the level of the four
zones over the entire day, the supply of taxis is closely—though
not perfectly—related to demand in the form of bookings.

To simplify the discussion that follows, we omit from our subse-
quent analysis the Tuas and Jurong industrial estates in the west and
Changi Airport in the east. (The booking patterns for Tuas and Ju-
rong more closely resemble the Central area than the surrounding

residential areas. The airport receives few bookings but attracts a
large number of empty cabs, distorting our calculation of taxi occu-
pancy.) While the impact of these omitted areas on the rest of their
zones may be non-negligible (e.g., there might also be an unusual
number of empty cabs in the zone but more distant from Changi
Airport), we believe these effects are of second-order importance
compared to our main findings.

Table 3 shows the relative size of these zones (with the regions
omitted as mentioned above). The table also shows the number of
distinct businesses and households located in each zone.

4.2 Occupancy and Waiting Time
To reason about the efficiency of the taxi system, we need ap-

propriate metrics. From a passenger’s point of view, a perfectly
efficient taxi system is one that delivers an empty taxi to his or her
location at the instant one is desired. In contrast, a taxi driver’s
idea of an efficient system is one in which his or her cab is never
empty—the moment one passenger pays and leaves, another gets
in. Obviously these goals are in conflict. Rather than take one side
or the other, we say that an efficiently balanced taxi system is one
in which the satisfaction of passengers and drivers is inversely cor-
related. That is, when passengers are happy because of short wait-
ing times, drivers are unhappy because of low occupancy, and vice
versa. In other words, an efficiently balanced taxi system is one in
which supply and demand tend to move in the same direction in
response to external shocks.

Our index of driver satisfaction is simply the ratio O/(O + A),
where O = the number of minutes the taxi was occupied (in state
POB) in the given zone and hour, and A = the number of minutes
it was available (in state FREE). We call this ratio the occupancy
rate.



Count Data

Total Taxis 6,230

Inactive Taxis 268

Total Taxi Observations 3,658,507

Erroneous Observations 20,039

Booking Calls 38,048

Summary Statistics (Per Taxi for Full Day)

Mean Median Std.

Updates per Hour (no.) 33.35 33.70 9.48

Time on the Road (hrs) 17.99 18.38 4.18

Average Speed (km/h) 38.94 33.00 39.47

Distance Traveled (km) 700.53 – –

Street Pickups (no.) 21.1 21.0 8.50

Booking Pickups (no.) 4.6 4.0 3.64

Total Pickups (no.) 25.7 26.0 9.68

Average Occupancy Rate (%) 42.46 46.17 17.24

Distanced traveled is computed by multiplying the average
speed with the average time on the road. We did not com-
pute a median or standard deviation.

Table 2: Summary Statistics for Taxi Data

We measure passenger satisfaction by the median waiting time
for a booking in a given zone during a given hour. Two sources
of data contribute to this measure. First, for every taxi in the zone
during the hour, we observe its state transitions and note the time
lag between a transition to ONCALL from any other state and a
transition to POB from ONCALL. Each of these time lags (of which
there may be several in a given zone-hour) represents the duration
between a booking request and the pickup that satisfies it.

Second, we also observe that—especially during peak periods—
some booking requests may never be satisfied. From the customer’s
point of view, this is equivalent to an infinite waiting time. We
obtain this number by taking the difference between the number of
bookings in a zone-hour and the number of successful ONCALL
pickups. (Note that we do not have data on how long customers
wait to hail a cab on the street without a booking.)

As long as fewer than half of the booking requests in a zone-hour
are unsatisfied, the median waiting time will be well defined. Oth-
erwise we arbitrarily define it as 20 minutes, which is five minutes
longer than the longest waiting time for a successful pickup in our
data set.

Figure 2 shows four graphs, one for each geographic zone, of the
occupancy rate and median waiting time in the given zone for each
hour in the day.

• In Zone 1, we see a moderate surge in occupancy in the
morning, while waiting time doubles from about 5 minutes
to 10. The evening rush is similarly profitable for drivers
(with occupancy rising again to over 60%) but much worse
for passengers, who in the median case cannot get a cab at
all between 10 pm and 12 midnight. Occupancy falls way off

Zone Size Occupants

Area (km2) Perimeter (km) Total Number of

Households Businesses

Zone 1 - Central

58.93 50.50 114,521 44,964

Zone 2 - Condo

531.97 39.10 89,493 24,399

Zone 3 - West

194.62 75.78 253,336 20,201

Zone 4 - East

187.51 71.01 448,703 70,058

Total

973.03 236.38 906,053 159,622

Table 3: Demographics by Zone

again late at night, as waiting times also reach their minimum
for the day.

• In Zone 2, the time of peak demand is in the morning from
6–10 am. This is consistent with the residential nature of
this zone. Many residents do not have easy access to mass
transit lines, so they rely on taxi bookings for their morning
commute to work. Note that passenger waiting time goes up
almost exactly in tandem with occupancy, indicating that the
system is being stretched about equally on both the supply
and demand sides.

• In Zone 3, waiting time and occupancy track each other quite
closely except for the usual late-night drop in occupancy (for
which drivers are compensated by a fare surcharge) and a
sharp spike in waiting time in the late morning (10 am to
12 noon). It is possible that this spike is due to a chance
event (perhaps related to the rain on the day the data was col-
lected), but it could also be explained by drivers either taking
a break or simply not being in the zone after the morning
rush brought many of them into the city center.

• In contrast, Zone 4 is almost totally well behaved. We see a
moderate rise in occupancies and waiting time in the morn-
ing, but both decline gradually over the rest of the day.

These patterns clearly highlight situations in which either wait-
ing time spikes without a similar rise in occupancy (as in Zones 1
and 3), or occupancy drops without a similar reduction in waiting
time (as in all four zones late at night). In the former case, cus-
tomers are worse off but drivers are no happier. In the latter case,
drivers are worse off but customers are no happier. The third step
in our analysis explores these relationships more systematically.



Zone 1: Central Zone 2: Condo

Zone 3: West Zone 4: East

Figure 2: Occupancy Rate and Mean Waiting Time by Zone and Hour

4.3 Predictability and Efficiency
Figure 3 is similar to Figure 2 in that it shows four graphs, one

for each geographic zone. However, instead of plotting occupancy
and waiting time by hour, the new figure shows each hour’s obser-
vation on a scatter plot with waiting time on the horizontal axis and
occupancy on the vertical. Two lines of best fit are plotted, with cor-
relation coefficients r and r̃, respectively: the dark one (r) includes
the outliers on the far right (hours in which the median booking
request was unsatisfied), while the latter one (r̃) omits them.

As we would expect, waiting time and occupancy are positively
correlated in all four zones. In general, that is, longer waiting times
(unhappy customers) are associated with higher occupancy (happy
drivers), and vice versa. In all zones except 4, this correlation is
even stronger if we remove the waiting time outliers that corre-
spond to hours in which the ability of the system to match available
drivers to waiting passengers was exceptionally poor.

Note that if these variables were perfectly correlated, the fleet
operator would be forced to choose between satisfying drivers and
passengers in what is effectively a zero-sum game. Of course, to the
extent that the firm seeks to maximize its own profits, it no doubt

does something like this already when its managers (in conjunc-
tion with the government, which exerts control over the company
through regulation and indirect corporate ownership) determine the
number of taxis to put on the road and set policies for compensating
drivers.

Although the firm’s profit maximization problem is interesting
and important, we want to focus on the efficiency gains that can
be made through operational improvements, e.g., to the central-
ized taxi dispatching system and/or the local incentives of drivers
or passengers. To see the opportunities for such improvements in
Figure 3, we simply need to look at the points that lie below and
to the right of the best-fit line. These are the points for which the
waiting time is unusually high for a given level of taxi occupancy—
or, equivalently, the occupancy is unusually low for a given level of
waiting time.

(Similarly, points above and to the left of the best-fit line are rel-
atively efficient. The fleet operator might want to think about how
to move the line of best fit “northwest” on the graph—achieving
lower waiting times, on average, with higher levels of occupancy.)

Most of the “southeast” points on the figure occur during the late
night periods, when we already know from Figure 2 that occupancy



Zone 1: Central Zone 2: Condo

Zone 3: West Zone 4: East

The correlation coefficient of the dark line is r.

Figure 3: Correlation Between Hourly Observations of Occupancy and Waiting Time by Zone

is low. This, in turn, is partly due to the fare surcharge, which is
designed to ensure that the night shift remains profitable enough
to attract a sufficient number of drivers to prevent taxi shortages at
critical times of the night, e.g., when bars and clubs close. Thus
some of what we discover by looking at these correlations turns
out not to be mysterious. Nonetheless, it demonstrates the power
of our approach to identify potential trouble spots in a simple and
repeatable way.

5. DISCUSSION
In this paper we have demonstrated some simple kinds of analy-

sis that shed light on the efficiency of a real GPS-enabled taxi dis-
patching system. We have considered the perspective of passengers
and drivers as well as the fleet operator itself.

The use of these kinds of techniques is by no means confined to
offline analysis of historical data. Graphs such as those shown in
Figures 2 and 3 can easily be computed online if the raw data are
available, allowing the dispatching system to respond in near-real
time. Moreover, the high resolution of GPS coordinates allows ge-

ographic zones to be much more granular that we have shown so
far. (In fact, the actual data set from ComfortDelGro is divided into
100 zones, which we aggregated into four for ease of exposition.)
It is easy to imagine a working system to identify hotspots char-
acterized by unusually long wait times—or indeed coldspots with
unusually low occupancy.

It is also natural to ask how the inefficiencies identified by such
a system could be mitigated. Rather than propose a specific solu-
tion, we appeal broadly to the multi-agent systems literature as a
powerful and diverse source of techniques for improving coordina-
tion and resolving incentive conflicts in complex systems with both
natural and artificial components. The taxicab setting we study is
a prime example of such a system since it combines thousands of
boundedly rational, imperfectly informed, and economically moti-
vated human agents with an automated dispatching mechanism that
relies on large amounts of real-time data.

Directions that could be taken to improve this system include:

• A more dynamic market mechanism for allocating book-



ings to taxis. The current system used by ComfortDelGro
is a hybrid in which drivers may be assigned jobs if they
are free, or bid for them by estimating a time to arrival if
they have a passenger on board (since the dispatching system
does not generally know the passenger’s destination and thus
cannot estimate when the driver will be free). Booking fees
are fixed according to the time of day and day of the week.
One could explore the use of more explicit prices (either dol-
lars paid by consumers or an artificial currency transferred
among drivers) to provide stronger incentives to respond to
an emerging hotspot.

• A way to share local information among drivers that could
enable hotspots to be identified and resolved more quickly
and reliably. This could be as simple as incorporating a traffic
estimation system in the spirit of Yoon et al. [13]. Harness-
ing such a system to adjust the booking allocation algorithm
would be nontrivial but could have a significant impact.

• Application of online learning techniques to ensure that re-
curring patterns hot- and coldspots are anticipated and ad-
dressed proactively in the future. Part of the challenge with
this would be to educate the humans “in the loop” as well
as the automated dispatching system. But if drivers could
be convinced that they can earn more money (and potentially
work fewer hours) by optimizing their cruising patterns when
they are free, they might embrace this kind of technology.

We look forward to pursuing these directions in future work.

6. CONCLUSION
In this paper, we presented an analysis of the movement of 6,230

taxis over a 24-hour period. We showed that the taxi system is
mostly efficient. However, there are still periods of inefficiency
that arise in this otherwise well regulated system.

A common problem that faces researchers is the lack of real-
world data to inform theoretical models and simulations. To that
end, we hope that the data and statistics presented in this paper,
which were obtained from a large transportation network, prove
useful to researchers developing other types of autonomous and
semi-autonomous systems.
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